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We show that the formal perturbation expansion of the invariant measure for 
the Anderson model in one dimension has singularities at all energies 
E0 = 2 cos g(p/q); we derive a modified expansion near these energies that we 
show to have finite coefficients to all orders. Moreover, we show that the first 
q -  3 of them coincide with those of the "naive" expansion, while there is an 
anomaly in the ( q -  2)th term. This also gives a weak disorder expansion for the 
Liapunov exponent and for the density of states. This generalizes previous 
results of Kappus and Wegner and of Derrida and Gardner. 
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1. INTRODUCTION 

Over the last few years the mathematical understanding of the properties of 
one of the oldest models for electron transport in disordered crystals, the 
Anderson model, (1) has greatly advanced. In particular, there are detailed 
results on the nature of the density of states available. However, essentially 
all results concern the localized regime, i.e., the domain of parameters 
where the disorder effectively dominates the behavior of the system. That  
is, they regard the model in one dimension (2) or they are confined to large 
disorder or high energy. (3) Virtually nothing is known when the disorder is 
"weak." 

In this paper we take up some earlier attempts (4 6~ to derive a pertur- 
bation expansion for the density of states in one dimension for weak dis- 
order. 
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To be specific, we study the Hamiltonian 

H = H o + 2 V  

on F(Z) where 

(Hou)(n) = u(n + 1) + u(n - 1) 

(1.1) 

(1.2) 

and V is a diagQnal matrix with diagonal elements V(n), n e Z ,  that are 
independent, identically distributed random variables with a common 
probability distribution #. We will choose for definiteness/~ such that 

f@(v) v=0, I@(v) v2=1 (1.3) 

Furthermore, we will assume that # has finite moments of all orders. 
The eigenvalue equation associated with H is 

u(n + 1) + u(n -- 1) + 2V(n) u(n) = Eu(n) (1.4) 

Introducing Z ( n ) - u ( n ) / u ( n - 1 ) e R ,  we may write this as a recursion 
relation for Z(n): 

Z(n + 1 ) = E -  2V(n) - 1/Z(n) (1.5) 

The Liapunov exponent ?(E) and the density of states N(E) are related to 
the large-n behavior of Z(n). If we define 

nl i _1 ~ In Z(i) ~(E)= m n,=, 

then 

(1.6) 

y(E) = Re ~(E) (1.7) 

N(E) = ~ Im ~(E) (1.8) 

Equation (1.5) defines a Markov process and we may expect to compute 
large-n limits from an invariant measure associated with (1.5). Indeed, 
Furstenberg's theorem (7) asserts that, for 2 # 0, there is a unique invariant 
measure dv~.E(x) on R, i.e., a measure satisfying 

f r d v ; . e ( x ) f ( x ) = E f t d v ~ . , E ( x ) f ( E - 2 V - 1  ) (1.9) 
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for all bounded, measurable functions f Here E denotes the expectation 
with respect to d/t(V). The invariant measure is actually continuous and 
hence supported by R. Moreover, 

~(E) = fR In x dvx.e(x ) (1.10) 

This invariant measure is thus a basic object to compute, and we will 
concentrate on deriving the perturbation expansion for dv)..e(x), more 
precisely for the density of this measure. 

Problems with a straightforward perturbation expansion in 2 as 
proposed by Thouless (4) were first discovered by Kappus and Wegner, (5) 
who noticed that the leading coefficient in 2 was inadequate in the center of 
the band ( E = 0 )  and that the differentiated density of states n~(E) 
exhibited a discontinuity there. They called this phenomenon an anomaly. 
Derrida and Gardner, (6) looking at the invariant measure, extended this 
result. They found that at energies E =  _1, the next-to-leading coefficient 
of the Thouless expansion was incorrect, and does exhibit a discontinuity 
there. They also conjectured that such anomalies should indeed occur at all 
energies of the form E = 2 cos n(p/q), with p, q relatively prime integers. 

In the present paper we give a rather complete analysis of this 
situation, at least at the level of formal perturbation theory. First, in Sec- 
tion 2 we derive the equations for the density of the invariant measure and 
explain why problems should be anticipated at the special energies men- 
tioned above. We also indicate how to resolve these problems. Then, in 
Section 3, we derive the equations governing the coefficients of the formal 
perturbation expansion and show that, for energies E =  2 cos rcc~ with 
irrational, they have a unique solution with finite coefficients to all orders. 
However, the coefficient of order n = q will be seen to diverge as e ~ p/q, 
with p and q relatively prime integers. Furthermore, we will see that for 
rational the equations no longer determine a unique solution. In Section 3 
we derive the equations for the modified expansion for energies near 
Eo = 2 cos rc(p/~q). We show that those admit a unique solution with finite 
coefficients to all orders. Moreover, we show that they differ from the naive 
ones only at order n ~> q -  2. 

While this provides a detailed understanding of the properties of the 
formal perturbation expansion, we have not been able to prove that this 
expansion is asymptotic to the true invariant measure, even if we were to 
impose further restrictions on the distribution #. Such a result would be 
very desirable. We discuss our partial results at the end of Section 4. 
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2. EQUATIONS FOR THE I N V A R I A N T  M E A S U R E  

A solution of (1.9) exists for all 2 > 0 as a probability measure. Under 
weak conditions on the distribution # (decay of the characteristic function), 
this measure even has a density. ~2~ If we assume the existence of a density 
cp~.,E(x), (1.9) implies that it must satisfy the equation 

~o;.,e(x ) = E [ ( E -  1 1 

We find it convenient to write this equation as 

where 

~o~,E(x) = B~,~0,~p;.,~(x) 

(2.1) 

(2.2) 

B~,Eo,~= E Iexp ( v2 d -  e22 d )  ] TEo (2.3) 

1 
( T ~ J )  = (E ~ _ x) 2 ~ (2.4) 

and E = Eo + 22e, with Eo chosen at our convenience. We will see that the 
properties of TE0 are essentially responsible for the appearance of 
"anomalies." Defining rE0(x)= 1 / ( E o -  x), we have 

( TEof)(x) = f(~E0(X)) dr Eo(X)/dx 

The map ZE0 for --2 < Eo < 2 has no fixed points, and depending on Eo, it 
is either cyclic or ergodic. These facts are most easily understood by 
mapping R to the circle. We put Eo = 2 cos ~ ,  and, following refs. 5 and 6, 
change variables from x ~ R to 0 ~ $1, where by $1 we mean the circle of 
circumference n, via 

x = sin(0 + ~ ) / s i n  0 (2.5) 

Thus we define a map J~ by 

(Jj)(O) = f(x) dx/dO (2.6) 

T~ = J~ TEoJ ~ 1 

Then TEo is mapped to 

and 

(z~ g)(O) = g(O - ~ )  (2.7) 
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For c~ r Q, r~ is thus an ergodic map on the circle and Lebesgue measure is 
the only mesure invariant under it. On the other hand, if c~ = p/q, ~ is 
cyclic with period q and there are infinitely many invariant measures for it. 
These statements also translate to spectral properties of Teo (here we think 
of TE0 as an operator on LI(R, dx)): if Eo = 2 cos nc~ with e irrational, the 
spectrum of Teo is the unit circle and one is its only eigenvalue, which has 
multiplicity one. If ~ = p/q, the spectrum of Te0 consists of the qth roots of 
unity; all these eigenvalues are infinitely degenerate. 

In particular, the equation T e o f = f  always has the (normalized) 
solution 

(4 - E~) 1/2 1 
~~176 = 2re x 2 - Eox  + 1 (2.8) 

If c~ is irrational, this solution is unique; otherwise, there exist infinitely 
many others. This indicates that at the special energies Eo = 2 cos n(p/q)  we 
should anticipate problems if we try to perturb around Teo. This will be 
made explicit in the next section. 

Let us now indicate how we may overcome this difficulty. The crucial 
idea is to iterate Eq. (2.2) q times if E0 = 2 cos n(p/q).  This gives 

q)~,e(x) = Bqeo,~q)~,E(x) (2.9) 

As 2 --* 0, B~ ~ / .  More importantly, 

A~,eo,~ =- (Bq,eo,~ - 1)/22 (2.10) 

converges (strongly on a dense set) to a differential operator with zero as a 
simple eigenvalue! (This fact will be established in Section 4.) Thus, we 
may consider Aa,eo,, as a small perturbation of Ao, eo,~, and hope to derive a 
viable perturbation expansion starting from the equation 

A ~,e0,~ ~~ = 0 (2.11 ) 

Again we will show this to be the case, at the level of formal perturbation 
theory, in Section 4. 

3. T H E  " N A I V E "  P E R T U R B A T I O N  T H E O R Y  

The obvious attempt to find a weak-disorder expansion for (p~m(x) is 
to (formally) write 

q,~,E(x) = ~ ~0~(x) (3.1) 
n = 0  
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where q);.,e is normalized by requiring its integral to be one, and to plug 
this ansatz into Eq. (2.2). A simple application of the Leibnitz rule gives 
then 

@e")(x)= ~ \k/t\O2k B~,e  q)~-k)(x) (3.2) 
k = O  2 = 0  

or, with 

(a-~ B~,E)~ ~ = E(V K) ak _ ~ Te (3.3) 

( I -  Te)q)~)(x)= ~ E(V k) ~ Teq)(e" - k/(x) (3.4) 
k = 2  

It is useful to map these equations to the corresponding ones on the circle, 
i.e., denoting 

h;,E(O) = (J~,q);..e)(O) (3.5) 

(3.4) becomes 

0] kz~h(e " k)(0) (3.6) (1-z~,)h(e')(O) = i E ( V k ) \ k j \  sinnc~ 
k = 2  / 

Introducing the Fourier coefficients of h, 

- _ 1 / - ~ / a  
h ~ ) ( m ) - - ~  j ~/~ dO e ~'m~ 

we have that (3.6) implies that 

(1--e-2~im~')[tE"(m)= ~ (k )  (sinE(gk)gc() ~ ~ [Dk]m'/]~ kl(l) e2~i~" (3.7, 
k = 2  / =  --oo 

where 

Din, = �88 l + 6m,,_1 -- 26,.m) (3.8) 

If a is irrational, 1 - e - 2 ' ~ m ~ # o  for all m#0 ,  and the system of 
equations (3.7) has a unique solution with the normalization /~(0)= 1. 
More precisely, we have the following result: 

I .amma 3.1. If c~ is irrational, (3.7) has a unique normalized 
solution. Moreover, 

( i )  h (E0) (m)  = a m ,  0 

(ii) h~)(0)= fi,,o 
(iii) h~)(rn)= 0 if Iml > n 
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ProoL Since ~ is irrational, 1 - e 2aiczrn is zero only for m = 0. But for 
m = 0, the right-hand side of (3.7) equals 

E V k (~/2 k 
~ ( ~ ) ( s i n  ~zc~) k ' ( d s i n 2 0 )  z~h~-~')(O) 

k = 2 ~ - -  r t / 2  

which is zero whenever h~'-k)(O) are periodic functions, which is the case 
by construction. Thus, a finite solution exists. Only the /~)(0) are not 
uniquely determined by the equations. But since the normalization of 
he.x(O ) implies 

~ 2  n 
n = o ~ h ~ ) ( 0 ) =  1 for all 2 

we are led to choose/~)(0)  = 1 and h~)(0)= 0 for n > 0. This gives (i) and 
(ii). Property (iii) follows from (i) using induction and the structure of the 
matrix Dim. 

If c~ = p/q, Lemma 3.1 fails, since if m is a multiple of q, 1 - e-2"~m~ = 0. 
Therefore, the recursion (3.7) no longer determines the solution uniquely. 
One might be tempted to extend the solutions h~")(O) by continuity to these 
energies. Define, for 7=p/q ,  p and q relatively prime, and sequences 
~ ~ p/q, c~r Q, the limits 

lim h(")tO~ = "h(")(O~ (3.9) E~ ~, 1 - -  E \ ) 
i ~ o O  

Lemma 3.2. For n < q  the limits defined in (3.9) exist and a r e  

independent of the sequences c% 

Proof. For any ~ r  Q,/~'~)(rn) -- 0 if tmf > n. Thus, l i m ~  ~o/~)(m) = 0 
if [rn[ >n.  On the other hand, i f m ~ n < q ,  

11 - e-2~'~= I ~ 11 - e 2,~i~p/q),.[ _ 11 - e -2,~m(~'- P/q)] ~ C > O 

if i is large enough, so that, since 

h ~ ? ( m )  = 1 - - e  -2~ '~ ' "  k = 2  (3.1o) 

the/1~(m) are uniformly bounded. Thus, all Fourier coefficients converge 
and since only a finite number of them is nonzero, their sum exists and 
gives the desired h~)(O). 
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On the other hand, if n = q, the nth Fourier component/~(e~)(n) will in 
general diverge as Ei ~ E. In fact, a straightforward computation shows 
that 

/ i \ q  q q--kl . . . .  kl-i 
(1 - -e -2~i~q)[~) (q)=q! l i  ) ~ ~ "-  

l = 1  k l = 2  k/=2 

x kl ..... kl j=j  1 - e  -2~i~(k'+ ... +kj) i=1I-I E(Vk~) 

(3.11) 

For ~-~ p/q, 1 - e - 2 ' ~ q ~  O, while the right-hand side of (3.11) approaches 
in general some finite limit. Thus, h~)(q) cannot remain finite as ~-~ p/q. 

Thus, the h~m(0) cannot be the correct solution for the special energies 
E= 2 cos(p/q)n. In fact, not even all the finite ~ ) ( 0 )  can be correct. For, 
since the equation for h~)(O) involves only the h~)(0) with k<~q-2 ,  if 
h~)(O)='h~)(O) for all k<~q-2 ,  then h~)(O) would necessarily diverge. 
Thus, if there is an asymptotic expansion for h~m(O ) with finite coefficients 
to all orders at the special energies; then some of the coefficients h~)(O) for 
n ~< q -  2 will have to be discontinuous as functions of the energy. This is 
the source of the so-called "anomalies." In the next section we show that 
Eq. (3.4) indeed permits a unique finite solution at the special energies. 
Moreover, we show that the anomaly occurs exactly in order q -  2, i.e., for 
n < q - 2, h~)(O) = "h(e")(O)! 

n d 2 

Now note that 

4. P E R T U R B A T I O N  E X P A N S I O N  NEAR T H E  SPECIAL  
ENERGIES  

We show now that the problems of perturbation theory near the 
special energies Eo = 2 cos Tc(p/q) can be avoided if, instead of starting the 
expansion with Eq. (2.2), we use Eq. (2.11) instead. Proceeding otherwise 
as in Section 3, this yields 

(Fl~( dk O q ) q?~o~k)(x) 
k = 3  2 = 0  

(4.1) 

( . 2 )  ) --AoEo - 2 rk ( l a 2  _ a :..e0,~ a=o ' ' E~ 2 ~--~x TqE~ ~, (4.2) 

For  a function f to be in the domain of this operator, f as well as T~of, for 
k = 0 ..... q -  1, must be twice differentiable. Moreover, since ~ox,e(x ) is the 



Invariant Measure for 1 D Anderson Model 509 

density of a probabil i ty distribution, we are only interested in solutions of 
(4.1) in L~(R, dx). In fact, it will turn out  to be more  convenient  to seek 
solutions in Hilbert  spaces ffgE0,~ ~ L1( R, dx) defined as follows: Let  

1 ( 
= No ( l + x4)l/2 exp x/-2 2~ x//2 x'~ arctg 1--Z-~) if E o = 0 (4.3) 

~o (~ ix)  

- N 1 exp (Keo e 1 2x - Eo 
- Eo x 2 _ Eo x + 1 \ (4 - E2o) ~/2 arctg (4 - E~)I/2J if E o 4:0 

(4.4) 

Here NEo are normal izat ion constants  such that  

f ~ ,,,~o~ dx 1 
- -  o 9  ~I~" Eo ' IZ  P 

Keo is some finite constant  that can be computed.  Then  

( ' ) ~o,~ = L2 R, ,~(o) (x)  dx (4.5) 
' U  E o , e  ~ 

In the remainder  of this section we will prove the following two theorems: 

T h e o r e m  I. The  system of equat ions (4.1) has a unique normalized 
set of solutions (n) ~0Eo.~(X ) in the domain  of Ao, Eo,, in ffd'E0,,. 

T h e o r e m  II. Let ~b~o)(x ) = (J~-lhr where ~(eo)(v) are defined in 
Section 3. Then for n ~< q -  3, 

 OL!o(X) = L (x) 

We first prove Theorem I. We start with the following lemma: 

I . o m m a  4.1 .  Ao, E0,~ are self-adjoint operators  on the Hilbert  spaces 
~Eo,~" The spectra of Ao,E0,~ are discrete, zero is a simple eigenvalue, and the 
normalized eigenfunction corresponding to it is ,~(o) ~x~ Moreover ,  if e = 0, 
then 

~r(Ao,Eo,O) = { - - C E o m 2 j m e Z }  

where CEo are constants  and the eigenfunctions are 

1 
Pm(X)=(l+x4) l /2e2imF(x)  if E o = 0  

(4.6) 

(4.7) 
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where 

F(x) = (1 + t4) 1/2 dt 

and 

1 
E0 

Pm (x) --x2-- Eox + 1 exp [2im arccot(x - cot ~ ) ]  (4.8) 

I . e mma  4.2. The right-hand side of Eq. (4.1) is orthogonal to 
~o(~ tx~ in ~fEo ~. E0,~: ~, ! 

Assuming these two temmas, the proof of Theorem I is now easy: 
Since the spectrum of Ao, eo.~ is discrete, its inverse exists and is bounded on 
the subspace orthogonal to its kernel, i.e., orthogonal to ~(o) tx~ By 
Lemma4.2, the right-hand side of (4.1) is in this subspace. Thus, all 
equations with n~> 1 can be solved there by inverting Ao, eo,~. Since, 
moreover, all functions orthogonal to ~.(o) have integral zero, the nor- b ~" E0,~ 

malization condition forces us to choose the normalized solution of the 
n = 0 equation. This proves Theorem I. | 

It remains to prove the lemmas. 
We show first that A0,E0,~ can always be written in the form 

AO,Eo,  = Tx p(x) + s(x) (4.9) 

with p(x), s(x) polynomials. Consider first the case E0 = 0. A simple com- 
putation shows that 

d x 2  To d T o = ~ x  (4.10) 

This together with (4.2) shows that Ao,o.~ indeed has the form (4.9) and, 
moreover, 

p ( x ) =  1/2(1 + x  4) (4.11) 

s(x) = x 3 - 5(1 + x 2) (4.12) 

If Eo = 2 cos u(p/q), (4.10) is simply replaced by 

d d x2 
T~o~ ~x TEo = ~ x  (4.13) 
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Moreover, 

T{oiAo, eo,~ Te0 = AO,Eo,~ (4.14) 

Using (4.13), one again derives (4.9) easily. A corollary of a more general 
result to be proven later (Lemma 4.5) will imply furthermore that 

p(x)  = Ceo(X 2 - Eox + 1 )2 (4.15) 

and 

l d  
s(x)  = -~ ~ p(x)  -- edeo(X 2 - Eox + 1 ) (4.16) 

with some constants cE0 and dE0. 
A straightforward computation shows now that Ao,E0,~ are symmetric 

operators in WEo,~' Self-adjointness is most easily seen by mapping Ao,E0,~ to 
the corresponding operator on periodic functions on the circle via J~. The 
result is then a consequence of Sturm-Liouville theory/s) 

The general solution of the equation Ao,eo,~f = 0 is 

s ( t )  x c , s ( y )  , "~ 8-1 . , = [ e x p (  ~ j ,4.,7, 

However, only the solution with C = 0  is in the domain of Ao, e0,~. A 
solution g with C r 0 will not be "periodic" at infinity, i.e., Teo g will not be 
continuous. Thus, zero is a simple eigenvalue of Ao,E0,~. In the same way 
one obtains the discreteness of the spectrum of A0, ~. For  e = 0 we have 
computed all eigenfunctions and eigenvalues of Ao,Eo,o. It is easy to check 
that e0 Pm (X) given by (4.7), (4.8) are eigenfunctions. Moreover, they form a 
complete set in ~r Since we will not use these results later, we omit the 
proof here. It suffices to mention that the Pm are is one to one correspon- 
dence with the Fourier basis on the circle. 

This completes the proof of Lemma 4.1. | 

Proof  of  I_emma 4.2. We only have to compute expressions 

' Lka~o ~ ~ , ~ ~  ~o(o) ,x~ - -  o o  E O , ~  ! 

= ~ o  (~ l~o~o~(x )=0  (4.18) 

where we used the fact that by means of (4.13) we can write 
[(dk/d2 k) BqE0,~]a= o as (d/dx) D (k 1) with D (k- 1) a differential operator of 
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degree k - 1  and that all the cp(~o~k)(x ) produced in the previous steps of 
the recursion are periodic at infinity. | 

We finally turn to the proof of Theorem II. We put e = 0 and supress 
this index. Let 

llm=-- 1 ~ l  O~k'~T~ (4.19) 
q n:o q EO 

In par- where ~oq = e (2~zi/q)p, be the projectors on the eigenspaces of T~0. 
ticular, Ho projects on the functions that are invariant under TE0. Note 
that the ~(Eo)(x) satisfy H o ~ 0 ) ( x ) = 0  if n > 0  (see Lemma 3.1). Our first 
observation is: 

[ . e m m a  4.3. Assume that q)~0)(x)= ~ ) ( x )  for all k < n. Then 

TE0(~b ~0)(x) - q)(E"o)(X)) = ~b~0)(x) - ~p (Eo)(x) (4.20) 

ProoL Both ~(~o ) and q)(Eo)(x) satisfy Eq. (3.4). The terms on the right 
of (3.4) involve only "~E0"~(k)tX~ j, ~ ) ( X ) ,  resp., with k ~< n - 2, and thus coincide 
by assumption. Thus, subtracting the equations from each other, we arrive 
at (4.20). | 

L e m m a  4 .4 .  

provided 

Under the same assumption as in the previous lemma, 

+~o)(x) = ~o)(X) 

n -~- 2 ( n  -~- 2 ~ {  dk Bq \ 
) ,~("+2-k)(x) = 0 (4.21) Ho Z ~ k J\d~ ~ ~.,E0/ ~Eo 

n = 3  2 = 0  

ProoL If (4.20) holds, (4.1) implies that 

l l  o A o,eo qCEo) ( x ) = 0 

But since/ /o commutes with Ao,E0 [see (4.14)], this shows that//oq)~0)(x) is 
in the kernel of Ao,E 0, i.e., 

no ~o)(X)= C~o)(X) = C~o)(X) 

where the last equality holds if n > 0 by assumption. But Lemma 4.3 shows 
now that 
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Since the normalization condition implies that 

f <,(x)dx=f <,(x)dx=0 
oo - - z o  

c = 0, and the lemma is proven. | 

After this lemma the theorem will be proven if we can establish (4.20) 
for n ~ < q - 3 .  The crucial observation that will give this result is the 
following: 

L e m m a  4.5. Let O (m-l)  be a differential expression in d/dx of 
degree m - 1 with analytic coefficients. If D ~" 1) satisfies 

xZT~olD (m 1)TEo= D (m-l) (4.22) 

and if m < q, then there are constants ck such that 

D(m-1)=rEo(X)  C k --d-~xreo(x) (4.23) 
k=l 

where 
r Eo(x) = x 2 - Eox + 1 (4.24) 

Proof. By assumption 
~, d i - 1 

D(m-  1)  = Pi(X) d x i -  1 
i--I 

with analytic pi(x). We show first that (4.22) implies that 

xZmTEo 1 pro(x) TE o = pm(X) (4.25) 

Namely, using (4.13), 

x2rgl pm(X) ~ TE~ = x2Tgl Pro(x) TE~ ~X x2 

d m - I  ( d m - 2 ~  
=x2mT{olp,,,(x) TEOd-777T+ 0 \ ~ j  (4.26) 

where O(d m 2/dxm-2) is a differential expression of degree m -  2. Com- 
paring coefficients of d m 1/dxm-1 gives (4.25). Next we show that (4.25) 
determines p,,(x) up to a multiplicative constant. Rewriting (4.25) as 

- ~  pm(x) (4.27) 
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and denoting by x+ and x_ the two roots of r~o(X ), i.e., 

X +_ = e + - i n ( p / q )  (4.28) 

we obtain by putting x = x_+_ in (4.27) 

1 
pro(X+_) -- (X + )2--------~ p~,(X +_ ) (4.29) 

and thus pm(X+_ )= 0 unless (x+)2m_= e -+ i~2m(p/q)= 1! This latter condition is 
not satisfied if m < q; x+ are thus roots of Pro. Therefore, 

p~) (x )  - pm(X)/rEo(X ) (4.30) 

is an analytic function. Moreover, it satisfies 

( ' _(1) E o _ _ _ t = _ ~ m  2 p ~ ) ( x )  (4.31) Pm x /  x 

SO that by the same argument as before, x+ are roots of _(1) Continuing _ / U m  �9 

this process, we finally find that 

p(mm)(x) =-- Pro(X) (4.32) 
ErEo(x)] m 

is analytic and satisfies 

p(~m)(E- 1/x) = p~")(x) (4.33) 

This equation admits only a constant as analytic solution, so that 

pro(x) = Cm[r Eo(x) ] m (4.34) 

Thus, we may write ]m, 
D(,,,- 1) = Cmreo(X) -~x re~ + D(m 2) (4.35) 

where O (m -2) is a differential expression of degree m -  2 with analytic coef- 
ficients. Moreover, D (m 2) satisfies again (4.22) {since r[(d /dx)  r] m - I  
does!}. We may thus proceed inductively to get (4.23). 

Before we continue with the proof of Theorem II, we want to derive 
the following corollary, which has already been used to prove Theorem I. 

C o r o l l a r y .  If E o r  

d d 
Ao,Eo,~ = cl ~ reo(X) ~ reo(X) + ~dl reo(X) (4.36) 
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Proof. Let first e=0 .  By (4.2) and using (4.13), 

1 - 4 7 A x )  
7k(x) 

-q-I q '  1 
_k=o dx k=l 

where )'k(x) are polynomials defined by 

y/~(X) = x2T/7olyk_ l(X) TE, 7o(X) = 1 

On the other hand, Lemma 4.5 implies that 

(4.37) 

d [ -  2 d ] d 
Ao,E0,o = C, ~xx [ r&(x)  ~xx + rE~ r'E~ + C2 ~ reo(X) (4.38) 

Comparing coefficients shows that C 2 =0. If ~ ~0,  the second term in 
(4.36) is obtained by the same reasoning. II 

This corollary establishes our earlier claims concerning the explicit 
form of Ao,E0.~- 

We now continue with the proof of the theorem. By Lemma 4.5 if 
m<q,  

d D rn -- 1)~ (E0~(X) ~" 0 (4.39) 

since qS(L~ = c/rEo(x). 
The final step in our proof is thus to show that Eq. (4.2) can be 

written as 

~XX ,//E0 \ ~  ) - -  

We consider first the term with k =  n + 2 in (4.21), i.e., 

/ ' d  ~+2 
Ho \d--Z;~ B~,E0)~=o q~0)(x) (4.40) 

[(d"+2/d)f+e)B~,Eo],t=o is a differential operator of degree n + 2 ,  with 
analytic coefficients, and can be decomposed into a sum of terms A(fl +I) 
such that 

T ~  1 ~ + 1~,~o = ~ ~ + ,~ 
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The terms with k # 0 do not contribute to (4.40), since ~0)(x) is invariant 
under Teo and A~"+l)O~0)(x ) is therefore annihilated by H o. Using (4.13), 
we can write A~o ~+~) as (d/dx)D ~"+~), where D ("+~) is as in Lemma4.5. 
Thus, (4.40) is equal to zero, provided n + 2 < q. We still have to consider 
the terms with k < n + 2  in (4.21). Here we can use Eq. (3.4) to express 
~(,+2 m)(,.~ in terms of differential operators acting on ~0)(x) and then 
proceed as before. Namely, for l < n, 

m ~ (1)( x Hm(1 - TEo) ~5~(x)= (1 --(Dq ) (~OEo) 

and hence 

Eo~ J 1 - e ~  Hmk=2 k d ~  BaE~ ~ .=o~~  (4.41) 

Since on the right of (4.41) only ~ 0  ) with r < l - 2  appears, we can iterate 
this process a finite number of times until we have expressed ~ (0 ~Oeo(X ) as a 
sum of terms with differential operators acting on ~0)(x) only. Moreover, 
it is obvious from the construction that the degree of these operators is 
always less than or equal to l. Inserting ~ ( x )  then into the terms in (4.21) 
with k < n gives the desired expression, i.e., differential operators of degree 
~<n+2 acting on ~0)(x). These vanish for the same reasons as the 
k = n + 2 term. This concludes the proof of Theorem II. | 

Remark. We can actually prove that A~,eo,~ ~ Ao, eo,~ in Jct~ as ~ -* O, 
in the sense of Kato's strong resolvent convergence in the generalized sense. 
If we assume that the characteristic function of the probability distribution 
# has fractional polynomial decay in addition to finite moment of all 
orders, it can be extracted from the work of Campanino and Klein (2) that 

r {0} • {z; Re z ~  - c }  

for 2 small enough, where c > 0 depends only on/~. We can also show that 
(A).,Eo,,-- z) -1 ~ (Ao,eo,,-- z) -1 strongly for Re z >/c' > 0. But we were not 
able to prove strong resolvent convergence in a neighborhood of 0. If we 
could do so, then we could use perturbation theory to prove that the 
expansion we get from (4.1) is actually asymptotic. 
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